Exercise 9

If a rock is thrown vertically upward from the surface of Mars with velocity $15 \mathrm{~m} / \mathrm{s}$, its height after t seconds is is $h=15 t-1.86 t^{2}$.
(a) What is the velocity of the rock after 2 s ?
(b) What is the velocity of the rock when its height is 25 m on its way up? On its way down?

Solution

Part (a)
To determine the velocity, take the derivative of the position function.

$$
\begin{aligned}
v(t) & =\frac{d h}{d t} \\
& =\frac{d}{d t}\left(15 t-1.86 t^{2}\right) \\
& =15-3.72 t
\end{aligned}
$$

After 2 seconds, the velocity is

$$
v(2)=15-3.72(2)=7.56 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Part (b)

Start by finding out when the rock is 25 meters above the surface: Set $h(t)=25$ and solve the equation for t.

$$
\begin{gathered}
h(t)=25 \\
15 t-1.86 t^{2}=25 \\
1.86 t^{2}-15 t+25=0 \\
t=\frac{15 \pm \sqrt{15^{2}-4(1.86)(25)}}{2(1.86)} \\
t \approx\{2.3535,5.71102\}
\end{gathered}
$$

Since the rock is thrown vertically upward, the rock is on its way up at $t \approx 2.3535$ and is on its way down at $t \approx 5.71102$. Plug these two times into the velocity function.

On its way up: $\quad v(2.3535) \approx 15-3.72(2.3535) \approx 6.245 \frac{\mathrm{~m}}{\mathrm{~s}}$
On its way down: $\quad v(5.71102) \approx 15-3.72(5.71102)=-6.245 \frac{\mathrm{~m}}{\mathrm{~s}}$

